
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

57, 4, pp. 1067-1079, Warsaw 2019
DOI: 10.15632/jtam-pl/112463

MULTI-CORE AND MANY-CORE SPMD PARALLEL ALGORITHMS FOR

CONSTRUCTION OF BASINS OF ATTRACTION

Marcos Silveira, Paulo J.P. Gonçalves, José M. Balthazar
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Construction of basins of attraction, used for the analysis of nonlinear dynamical systems
which present multistability, are computationaly very expensive. Because of the long runtime
needed, in many cases, the construction of basins does not have any practical use. Numerical
time integration is currently the bottleneck of algorithms used for the construction of such
basins. The integrations related to each set of initial conditions are independent of each other.
The assignment of each integration to a separate thread seems very attractive, and parallel
algorithms which use this approach to construct the basins are presented here. Two versions
are considered, one for multi-core and another for many-core architectures, both based on
a SPMD approach. The algorithm is tested on three systems, the classic nonlinear Duffing
system, a non-ideal system exhibiting the Sommerfeld effect and an immunodynamic system.
The results for all examples demonstrate the versatility of the proposed parallel algorithm,
showing that the multi-core parallel algorithm using MPI has nearly an ideal speedup and
efficiency.
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1. Introduction

Usual tools for numerical analysis of nonlinear dynamical systems which present multistability
and chaotic behaviour, such as construction of bifurcation diagrams, construction and visuali-
sation of basins of attraction, and construction of stability maps, are essential for a thorough
understanding of the underlying phenomena (Soliman and Thompson, 1989; Thompson and
Stewart, 2002; Rega and Lenci, 2005). However, they are computationaly very expensive and,
sometimes, these tools may not be of any practical use.
Improvements of processor core raw performance have been decreasing for over a decade,

and advances in computer hardware and software have been aimed towards parallel compu-
tation (Pacheco, 2011; Brodtkorb et al., 2013). A common technique for parallelisation is the
domain partitioning as in the parallel algorithm for mixed time integration for large-scale struc-
tural dynamic analysis with nonlinearities, Rao (2002), which is based on the serial algorithm
presented by Belytschko et al. (1979). Other examples are single step implicit algorithms (Modak
and Sotelino, 2002), population dynamics problems (Ramachandramurthi et al., 1997; Michaels
and Zubik-Kowal, 2012) and molecular dynamics (Murty and Okunbor, 1999; Trobec et al.,
1993; Aktulga et al., 2012). In other types of problems, a modular approach can be used for
systems that can be subdivided, such as in vehicle dynamics (Agrawal et al., 1992), large articu-
lated robotic systems (Bhalerao et al., 2012), and contact dynamics (Koziara and Bićanić, 2011).
In these cases, however, the communication overhead limits the efficiency and overall gains of
parallelisation.
Currently, the time integration is the bottleneck of algorithms used for simulation and dyna-

mical stability analysis of nonlinear dynamical systems which present multistability. Although
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parallel algorithms for time integration have been sought (Sommeijer, 1993; Cong, 1996), their
performance in large scale simulations is usually limited, as they suffer from low scalability and
large overhead (Bendtsen, 1996).
The construction of bifurcation diagrams, basins of attraction, stability maps and sensitivity

analysis involve numerous time integrations for different combination of values of parameters
and initial conditions. In analysis of dynamical integrity (Soliman and Thompson, 1989; Rega
and Lenci, 2005; McDonald et al., 1985; Lenci et al., 2013), the total run-time is drastically
increased, as the construction of basins of attraction is repeated many times. For a specific case
of construction of basins, the integrations related to each set of initial conditions are indepen-
dent of each other. This way, the assignment of each integration to a separate thread seems
very attractive. Each process is computationally intensive, although the memory requirement is
relatively low.
In view of the necessity to find faster ways to construct basins of attraction and to perform

dynamical stability analysis of nonlinear dynamical systems fully utilising the available com-
puting power, parallel algorithms for construction of basins of attraction are presented here.
Two versions are considered, one for multi-core and another for many-core architectures, both
based on a SPMD (single program multiple data) approach. The rest of the paper is organised
as follows: Section 2 introduces the generic serial algorithm for construction of basins of attrac-
tion. Sections 3 and 4 present the multi-core algorithm using MPI and the many-core algorithm
using CUDA. Sections 5-7 contain results based on the classical Duffing oscillator, a non-ideal
oscillator and an immunodynamics model. These examples of application are used to verify the
accuracy, scalability and efficiency while demonstrating the versatility of the proposed parallel
algorithms.

2. Tasks for the construction of basins of attraction

The construction of basins of attraction involves finding all attractors of a dynamical system
and identifying regions in the state space corresponding to initial conditions that lead to each
attractor. Details concerning the search and classification of attractors among static or dynamic
equilibria are not the focus of this work, and analytical and numerical methods can be found
elsewhere (Thompson and Stewart, 2002; Parker and Chua, 1992; Nayfeh and Balachandran,
1995). Once all the attractors are known, the dynamical equations can be numerically evaluated
with one set of initial conditions to determine to which attractor this set leads. This is repeated
for all initial conditions, identifying the basins of attraction.
An algorithm to determine the basins consists in cycling search through all desired initial

points, integrating a trajectory from each point to determine to which attractor it leads, and
grouping the points that belong to the same attractor. As a consequence of the uniqueness of
solutions, all points touched by a trajectory can be marked as pertaining to the same attractor.
This eliminates the necessity to evaluate a large quantity of grid points. Therefore, as a grid
point is selected, it must be checked if this point already belongs, or is close with a certain degree
of accuracy, to a trajectory. A serial algorithm to perform such tasks is depicted in Fig. 1a.

3. Multi-core parallel algorithm using MPI

From the previous Section, it can be seen that the detection of points belonging to calculated
trajectories can significantly reduce the run-time. However, this detection can lead to unaccepta-
ble communication overhead. In order to minimise communication between threads, information
of points already hit and of points hit by the current trajectory are sent at the beginning and
end of the process. In a region of the space state with an attractor at its center, trajectories tend
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Fig. 1. Serial algorithm used for construction of basins of attraction (a) and the multi-core parallel
algorithm using MPI (b). The processes in blue are executed by the master thread, the processes in

orange are executed in parallel by all other threads

to flow from the border towards the center. Note that this is only true if the corresponding basin
is either unbounded or the boundary is not contained in the considered region. If the points on
the border are used first, the trajectories originating from them will fill most of the region, and
a large number of grid points can be discarded (Parker and Chua, 1992). The selection of grid
points assigned to the computing cores takes this into consideration. As there is no need to wait
for any information from other threads, the next task can be started subsequentially, and a good
load balancing is achieved.

The serial algorithm for computation of the basins of attraction from Section 2 was modified
for use in x86 multi-core processors using MPI (message passing interface), as shown in Fig. 1b.
MPI was chosen as it is one of the most used frameworks for parallel scientific computing. The
master thread is responsible for broadcasting all parameters to the slave threads, for scattering
each subgrid of initial conditions to the respective thread, and for collecting and consolidating
the results. As the threads do not communicate with each other, there is no concurrency problem.
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When the number of cores c is much lower than the number of grid points pg, the grid is
subdivided in fewer regions. The number of points in each region is given by

pra =
pg

c
(3.1)

For an increasing number of cores, there is a larger number of regions, although they become
smaller, and the amount of checked, and possibly eliminated, grid points diminishes. Usually,
one uses from 30 000 to 300 000 grid points, which can be 3 to 4 orders of magnitude greater than
the available number of x86 cores. This ensures a good load balancing and that the detection
of used points eliminates a satisfactory portion of points. The maximum number of eliminated
grid points pe is given by

pmax
e
= c(pr − 1) = pg − c (3.2)

The serial run-time Ts is proportional to the number of calculated trajectories. Note that the
minimum Ts will be the time of evaluation of one trajectory, and this happens when pe = p

max

e
.

The maximum Ts will be the time of evaluation of pg trajectories (pe = 0). These relations are
given by

Ts ∝ (pg − pe) Tp ∝
(

pr −
pe

c

)

(3.3)

Although the minimum number of evaluated trajectories equals c in the parallel case, the mi-
nimum Tp (pe = p

max

e
) will be the time of evaluation of one trajectory, and the maximum Tp

(pe = 0) corresponds to pr trajectories. The time for communication must be considered in
these relations. When the number of eliminated grid points tends to pmax

e
, the run-time of the

multi-core parallel algorithm tends to be similar to the serial algorithm. When the number of
eliminated grid points tends to 0, the run-time of the multi-core parallel algorithm tends to be c
times faster than the serial algorithm.

4. Many-core parallel algorithm using CUDA

The use of GPUs for general computing in scientific problems may be very advantageous when
the problem can be divided in several light processes. In the problem of construction of basins
of attraction, the lightest independent process is the time integration of trajectories. Using the
CUDA (compute unified device architecture) platform, the algorithm for computing basins of
attraction was modified in order to assign the integration of each trajectory to one computing
core of the GPU. The CUDA platform was chosen as it is one of the most frequently used
technologies for GPU computing. Within the CUDA programming model, threads are grouped
in blocks, and the blocks are grouped in grids. The number of threads in a block and the number
of blocks in a grid depend on the device being used.

The modified algorithm (Fig. 2) consists of dividing the total number of grid points pg in b
blocks, with t being the number of available threads per block. All blocks are cycled, selecting
a subset of grid points, evaluating trajectories from each point, and consolidating the results
from the subset. The CPU is the master thread and is responsible for initialising the simulation,
selecting the subsets of points, checking for used points, assigning the points to the GPU and
consolidating the results. The processes executed in the GPU consist of the actual numerical
integrations of each point. If one or more points are detected as used, a new subset must be
selected in order to have exactly one point for each thread in the block, with the objective of
achieving a good load balancing.



Multi-core and many-core SPMD parallel algorithms... 1071

Fig. 2. Flowchart of the multi-core parallel algorithm used for construction of basins of attraction using
CUDA. The processes in blue are executed in the CPU, while the processes in green are executed in

parallel in the GPU

The number of blocks and the maximum number of points which can be eliminated are given
by

b =
pg

t
pmax
e
= (b− 1)t = pg − t (4.1)

in which t is the number of threads per block, pg is the number of grid points. The check for
used points is only made at the beginning and the end of the process. The equivalent of relation
(3.3) for the run-time of the many-core parallel algorithm is given by

Tp ∝
pg

t
−
⌊pe

b

⌋

(4.2)

in which ⌊·⌋ is the notation for the floor function. The minimum number of evaluated trajectories
equals to b in this case. The minimum Tp (pe = p

max

e
) will be the time of integration of one
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trajectory, and the maximum Tp (pe = 0) corresponds to b trajectories. When pe tends to p
max

e
,

the run-time of the many-core algorithm tends to be similar to the serial algorithm, and when
pe tends to 0, the run-time of the many-core parallel algorithm tends to be b times faster than
the serial algorithm.

5. Multi-core and many-core algorithms used on the Duffing oscillator

In order to verify the accuracy, scalability and efficiency of the proposed parallel algorithm, the
Duffing equation is used in this Section as an example of application, given by

mẍ+ cẋ+ k1x+ k2x
3 = B cos(ωt) (5.1)

in which m is mass, k1 and k2 are linear and nonlinear coefficients of stiffness, c is damping
coefficient, B and ω are amplitude and frequency of the excitation force. The values of the
parameters used here are m = 2.56 kg, k1 = 1N/m, k2 = 0.05N/m

3, c = 0.32Ns/m, B = 2.5N
and ω = 1 rad/s, which result in the existence of two co-existing limit-cycles, one with a large
and another with small amplitude (Thompson and Stewart, 2002). Figure 3 shows the basins of
the two attractors.

Fig. 3. Basins of attraction of the Duffing oscillator, Eq. (5.1). The red dot is the small amplitude
limit-cycle, with its basin in green, and the yellow dot is the large amplitude limit-cycle, with its basin

in blue. The attractors are represented by their Poincaré sections

The multi-core algorithm was executed on a x86 processor with 16 physical cores. The many-
-core algorithm was executed on a GPU with 448 CUDA cores, limited to a maximum of 512
threads per block. All timings shown are the arithmetic mean of at least 5 runs. The desired
resolution of the figure of basins of attraction is from 256 × 256 to 512 × 512 points, although
lower resolution basins were calculated for comparison of different problem sizes. The numerical
algorithm used to calculate the time response is the 4-th order Runge-Kutta method with a
fixed step. The fixed step is used to enable direct comparisons between different architectures.

The performance is measured by the run-time, speedup and efficiency. The run-time of an
ideal parallel implementation Tp, the speedup S and efficiency E are given by

T ideal
p
=
Ts

c
S =
Ts

Tp
E =
S

c
=
Ts

cTp
(5.2)

This is only reached when no overhead is incurred by parallelisation. In an ideal parallel imple-
mentation, Sideal = c.

Remaining serial sections and inter-thread communication overhead are the contributing
factors for lower efficiency of real implementations. Note that the speedup and efficiency are
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calculated based on the reference Ts, which can be obtained by the fastest known algorithm
to solve the problem, or by the parallel algorithm run on a single core (adopted here). The
reference Ts for the many-core algorithm is taken from the run on a single CUDA core.
Figure 4a shows the run-time as a function of the number of used cores. The number of

trajectories is given as the size of the grid of initial conditions. Note that there is a rapid
decrease in the run-time and fast saturation. However, incremental gains continue to be observed.
Figure 4b shows the run-time as a function of the number of calculated trajectories. An increase
in the run-time is linearly proportional to the number of calculated trajectories, indicating
excellent scalability. Figure 4c shows that the speedup is very close to the ideal line (in red).
Figure 4d confirms that the efficiency is nearly ideal. A small variation is seen for different grid
sizes, indicating that this is not a limiting factor. Besides that, the excellent scalability shown
demonstrates that the techniques applied to the algorithm are appropriate for the problem being
studied.

Fig. 4. Run-time as a function of the number of used cores (a) and as a function of the number of
calculated trajectories (b), speedup (c) and efficiency (d) as a function of the number of applied cores

using the multi-core algorithm with MPI for system (5.1)

The results of computation of basins of attraction using the many-core parallel algorithm
show that GPU technology also provides good time gains. Figure 5a shows a decrease in the
run-time as the number of used cores increases. Again, the saturation tendency of the run-time
is observed. For example, using a grid of initial conditions of 128 × 128 points, the difference
betweeen using 128 or 256 cores is less than 1%. Hence, it is possible to identify an optimal
number of cores to be used for a given number of trajectories. Figure 5b shows that the run-
-time is also linearly proportional to the number of calculated trajectories. In terms of the
speedup and efficiency (Fig. 5), the many-core algorithm is shown to be inferior to the multi-
-core version. Although there are substantial run-time gains compared to the performance on
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a single core, they are obtained via the much larger number of used cores, resulting in a low
efficiency. For direct comparison, the run-time of a 256×256 grid using the multi-core algorithm
is 1.87 faster than the many-core version.

Fig. 5. Run-time as a function of the number of used cores (a) and as a function of the number of
calculated trajectories (b), speedup (c) and efficiency (d) as a function of the number of applied cores

using the many-core algorithm with CUDA for system (5.1)

6. Application to a non-ideal system exhibiting the Sommerfeld effect

A simplified spring-mass-damper oscillator model with a non-ideal excitation source was defined
by Gonçalves et al. (2014, 2015), Balthazar et al. (2018), in which a cart moves horizontally
without friction, with a non-ideal DC motor fixed to it. The motor has an unbalanced mass that
provides excitation to the system. It was found that the Sommerfeld effect depends on some
system parameters and the motor operational procedures. The dynamic equations for motion of
the cart and of the motor shaft are written as

ẍ(M +mr) + kx+ cẋ = mrr(φ̇
2 cosφ+ φ̈ sinφ)

φ̈(J0 +mrr
2) = ẍmrr sinφ+M0

(

1−
φ̇

Ω0

) (6.1)

The values used for the parameters are given in Gonçalves et al. (2014). Two distinct re-
sponses of the system are related to two co-existent period-1 limit-cycle attractors, with a large
amplitude limit-cycle related to the resonance capture. With low Ω0, only the large amplitude
limit-cycle exists. This indicates the presence of the Sommerfeld effect, as the motor in this
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configuration is not able to provide enough energy to the system to escape from the resonance.
Increasing Ω0, two limit-cycle attractors co-exist, with the state space divided in two regions:
one with initial conditions leading to the large amplitude limit-cycle (Sommerfeld efect), and
another leading to the small amplitude limit-cycle (Fig. 6).

Fig. 6. Basins of attraction of the non-ideal oscillator, Eq. (6.1), using Ω0 = 1.625ω0 (a),
Ω0 = 2.167ω0 (b) and Ω0 = 2.438ω0 (c). The red dot represents the small amplitude limit-cycle, with its
basin in green, and the yellow dot represents the large amplitude limit-cycle, with its basin in blue

Fig. 7. Run-time as a function of the number of used cores (a) and as a function of the number of
calculated trajectories (b), speedup (c) and efficiency (d) as a function of the number of applied cores

using the multi-core algorithm with MPI for system (6.1)

Figure 7 shows that the run-time for this system is considerably longer than for the Duf-
fing system, as this non-ideal oscillator takes longer to settle into steady-state behaviour. The
algorithm provides the same level of time gains, the speedup remains very close to the ideal
line, and the efficiency is maintained closer to ideal than in the Duffing system. The results of



1076 M. Silveira et al.

computation of basins of attraction using the many-core parallel algorithm with CUDA present
the same tendencies as shown in the previous Section with reasonable speedups at the cost of
lower efficiency. However, the run-time is more than 2.1 times slower when compared to the
multi-core version.

7. Application to an immunodynamics system

Lang and Li (2012) studied the presence of different types of equilibria on a model of Human T
cell leukemia virus type I (HTLV-I) infection. The model describes uninfected CD4+ T cells (x),
infected CD4+ T cells (y) and CTL (z), and is given by

ẋ = λ− βxy − µ1x ẏ = σβxy − γyz − µ2y

ż = νy
zn

zn + a
− µ3z

(7.1)

This system has three types of equilibria (Lang and Li, 2012), with the first related to an
organism without infection, the second related to an asymptomatic carrier state, and the third
related to the development of HAM/TSP. Using the parameters related to CD4+ T cell produc-
tion rate λ and CTL production rate ν as bifurcation parameters, the system undergoes Hopf
bifurcations, and regions with co-existing attractors arise. In the context of immune dynamics,
the basins represent biological conditions at the time of infection which will result in one specific
manifestation of a disease and, therefore, indicates the long-term health state of an individual.
With the base set of parameters given in Lang and Li (2012), the system presents one equili-
brium point, representing evolution of the infection in which the levels of healthy and infected
cells reach fixed levels, and a limit-cycle, representing a condition in which the levels of cells
oscillate over time.

The two attractors are shown in Fig. 8. On the left, the equilibrium point attractor is
in yellow, and the limit-cycle attractor is in red. The blue region represents the basin of the
equilibrium point, and the green region is the basin of the limit-cycle. On the right, the CTL
effectiveness is decreased. As a result, the red attractor becomes an equilibrium point, and its
basin (green region) is enlarged. The blue region is now the basin of an equilibrium point at
another region of the state space, not shown in this figure.

Fig. 8. Co-existing attractors and respective basins of model (7.1). With base parameters (a), there is
one equilibrium point (yellow), with its basin in blue and one limit-cycle (red), with its basin in green.

With γ = 1 (b), there is one equilibrium point (red)
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Fig. 9. Run-time as a function of the number of used cores (a) and as a function of the number of
calculated trajectories (b), speedup (c) and efficiency (d) as a function of the number of applied cores

using the multi-core algorithm with MPI for system (7.1)

Figure 9 shows that the run-time is consistently lower using the multi-core algorithm incor-
porating MPI. Intra-function timings show that the lack of trigonometric functions contribute
to this. The algorithm provides the same level of time gains as observed in the previous Sections.
The speedup and efficiency are less close to ideal. The run-time of the many-core algorithm with
CUDA is more than 1.7 times slower when compared to the multi-core version.

8. Concluding remarks

Examples of application of the algorithm to the classic nonlinear Duffing system, to a non-ideal
system exhibiting the Sommerfeld effect and to a immunodynamics system are shown. The
results for all examples indicate that the multi-core algorithm using MPI has nearly an ideal
speedup and efficiency, and perform consistently on different types of systems.

The use of GPUs for general computing in scientific problems may be very advantageous
when the problem can be divided in several light processes. Although each integration process
has a very small memory footprint, the complexity of the dynamical system being analysed may
result in a heavy processing load, which hinders the advantage of using a GPU. In processing
intensive cases, the execution in the CPU is usually more advantageous, even considering a lower
number of computing cores compared to GPUs. This happens because of different purposes and
architectures of GPUs (massive number of light threads) and CPUs (small number of intensive
threads). Consequently, the use of a many-core GPU proved to be less satisfactory for construc-
ting basins of attraction, with the multi-core algorithm run in the CPU shown to be faster, more
efficient and more scalable.
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